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SUMMARY 

The steady state solution of the system of equations consisting of the full Navier-Stokes equations and 
two turbulence equations has been obtained using a multigrid strategy on unstructured meshes. The flow 
equations and turbulence equations are solved in a loosely coupled manner. The flow equations are 
advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time 
step, while the turbulence equations are advanced in a point-implicit scheme with a time step which 
guarantees stability and positivity. Low-Reynolds-number modifications to  the original two-equation 
model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall 
distances. A variety of aerodynamic flows are solved, initializing all quantitities with uniform freestream 
values. Rapid and uniform convergence rates for the flow and turbulence equations are observed. 
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1. INTRODUCTION 

The use of unstructured meshes has become more widespread in recent years owing to the ease 
with which complex geometries can be handled and the possibility of enhancing the solution 
accuracy and efficiency through adaptive meshing techniques. To date, most of the successes of 
unstructured mesh techniques have been in computing inviscid flows in two and three dimensions 
over arbitrary geometries. However, more recently, solutions of the Navier-Stokes equations on 
unstructured meshes have been r e ~ 0 r t e d . l ~ ~  The main obstacles to efficiently computing 
high-Reynolds-number flows on unstructured meshes are due to the required grid stretching 
and the turbulence model. For high-Reynolds-number flows over streamlined bodies, viscous 
effects are confined to thin boundary layer and wake regions, which can only be resolved 
efficiently using high-aspect-ratio elements. One a p p r ~ a c h ~ . ~  is to fit a thin local mesh of 
structured high-aspect-ratio quadrilaterals in the viscous regions and fill the remainder of the 
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domain with an unstructured mesh. The other approach consists of filling the entire domain 
with an unstructured mesh which contains highly stretched triangular elements in the viscous 
 region^.^ In this work the latter approach has been pursued in the interest of developing a more 
general method capable of dealing with a wider variety of flows, such as flows with confluent 
boundary layers or mixing wakes, and also to enable the straightforward implementation of 
adaptive meshing techniques throughout all regions of the flow field. The numerical scheme 
must therefore be formulated such that the accuracy and convergence are not seriously affected 
by the presence of highly stretched triangular elements. 

The most commonly employed turbulence models for compressible flow calculations are of 
the algebraic mixing length type.6 These models have been shown to produce good results for 
attached turbulent boundary layers and mildly separated flows using structured meshes, and 
have also been implemented for non-trivial geometries on unstructured meshes.' Although such 
models can be made inexpensive and computationally robust even in the context of unstructured 
meshes, they lack the generality required for dealing with completely arbitrary geometries, and 
their ability in predicting flows with multiple confluent shear layers and large amounts of 
separation is at best limited. Two-equation models, on the other hand, offer the possibility of 
dealing with the more complicated flows which are often associated with the complex geometries 
for which unstructured meshes are so well suited. In principle, the implementation of such models 
on unstructured meshes can be accomplished in a straightforward fashion simply by discretizing 
and integrating the turbulence equations in a manner analogous to that employed for the mean 
flow equations. However, field equation turbulence models have often proved to be extremely 
difficult to integrate to steady state, exhibiting stiff or unstable numerical behaviour in regions 
very close to the wall as well as in the far field. The use of multigrid to solve the turbulence 
equations has recently been reported by several using an Ni-type scheme on structured 
meshes. In this work, a multigrid strategy which has previously been developed for the Euler 
and Navier-Stokes equations on unstructured meshes4~'0 is extended to solve the two turbulence 
equations as well. 

2.  GOVERNING EQUATIONS 

The governing equations are obtained by Favre averaging the Navier-Stokes equations and 
modelling the Reynolds stress and heat flux terms by the Boussinesq assumption. In conservative 
form these equations are written as 

where w is the solution vector and f, and g, are the Cartesian components of the convective 
fluxes: 

W =  
PU2 + P 

puE + u p  puE + u p  

In the above equations p represents the fluid density, u and u are the x- and y-components of 
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the fluid velocity respectively, E is the total energy and p is the pressure, which can be calculated 
from the equation of state of a perfect gas: 

p = ( y  - I ) p ( E  - y). (3) 

The viscous fluxes f, and gv are given by 

where a represents the stress tensor and q the heat flux vector, which are given by 

Here p represents the molecular viscosity and p, denotes the turbulent eddy viscosity, which 
must be computed by a suitable turbulence model. Pr is the laminar Prandtl number, which is 
taken as 0 7  for air, Pr, is the turbulent Prandtl number, taken as 0.9, and y is the ratio of specific 
heats of the fluid. 

The high-Reynolds-number k-e turbulence model originally described by Launder and 
Spalding' can similarly be written as 

where w, f, and gc are now given by 

w = [;3 f c  = [3, s c  = [;;I. 
The diffusive fluxes f ,  and gv are given by 
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h =  

and the source term h is given by 

p l P  - 3Spk - PE 

h = [  E 

k C1-(P,P-$SPk)- 

0 
0 

plP - $pk - PE 

where the production term P and the term S in two dimensions are given by 

P = $(u; + u,” - u,u,) + (u, + s = u, + u,. (14) 

PI = PC,k2/E (1 5 )  

The eddy viscosity is calculated as 

and k also appears in the normal stresses in equation (5). The constants appearing in the above 
equations are given the standard values recommended in Reference 11, i.e. 

c, = 0.09, 0 k  = 1.0, 0, = 1.3, C, = 1.44, C2 = 1.92. (16) 

These equations are coupled to the governing equations for the mean flow and exhibit a similar 
structure. Therefore a single system of equations which simultaneously governs the flow and 
turbulence quantities may be written as 

aw dfc agc aL ag” - + - + - = - + - + h, 
at ax ay ax ay 

where the solution vector and the source term are now given by 

W =  

I 0 

and the flux definitions follow from equations (2), (4), (11) and (12). 
The solution procedure consists of discretizing these equations in space on an unstructured 

mesh and then integrating the discretized equations in time until the steady state solution is 
obtained. The basic strategy pursued in this work involves the use of a finite element Galerkin 
discretization technique in conjunction with an unstructured multigrid integration technique to 
solve for the steady state. Although all six equations of the governing system are solved 
simultaneously in the multigrid strategy, the flow equations are only loosely coupled to the 
turbulence equations (through the value of pl) and we choose to employ somewhat different 
base grid solvers for the flow equations and the turbulence equations. 

3. SPATIAL DISCRETIZATION 

The equations governing the mean flow are discretized using a Galerkin finite element approach! 
The flow variables are stored at the vertices of the triangles. The convective fluxes are computed 
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a t  the vertices of the triangles and assumed to vary linearly over the triangular elements. For 
the viscous terms the flow variables themselves are assumed to vary linearly over the triangular 
elements of the mesh and the required velocity gradients in the expression for the viscous stresses 
are thus computed at the centres of the triangular elements. Additional artificial dissipation 
terms are required to ensure the stability of the convective terms and these are constructed as 
a blend of a Laplacian and biharmonic operators in the conserved variables, designed to ensure 
second-order accuracy throughout the flow field, except in the vicinity of a shock where 
first-order accuracy is recovered. For the turbulence equations the diffusive terms are similarly 
discretized using a Galerkin finite element approach, assuming linear variations of the conserved 
variables over the triangular elements. The velocity gradients in the source terms are also 
constructed assuming linear elements. The convective terms, however, are constructed using 
first-order upwinding. Although only first-order-accurate, this approach is employed since it 
helps ensure stability and positivity of the conserved variables throughout the integration 
procedure, as will be shown. Furthermore, in regions where convection is small compared with 
the diffusion terms or the source terms, such as in the logarithmic law-of-the-wall region, the 
scheme reverts to second-order accuracy. In future work, however, a second-order-accurate 
implementation of the convective terms may be pursued. 

4. INTEGRATION SCHEME 

The discretized mean flow equations are integrated in time using an explicit five-stage Runge- 
Kutta time-stepping scheme in which the convective terms are evaluated at every stage and the 
dissipative terms are only evaluated at the first, third and fifth stages. This scheme, which has 
previously been described in References 4 and 12, has been particularly devised to ensure rapid 
damping of high-frequency errors and is thus well suited to drive the multigrid algorithm. 
Convergence is accelerated by the use of local time stepping and implicit residual averaging. In 
principle, the turbulence equations may be integrated in time using the same explicit scheme. 
However, the presence of source terms imposes a further time step restriction. If the flow 
equations and turbulence equations are integrated in a fully coupled manner, the minimum local 
time step from the flow and turbulence equations must be employed. In regions where the source 
terms dominate, this may lead to slow convergence. If, on the other hand, the flow equations 
and turbulence equations are integrated in an uncoupled explicit manner, the turbulence 
equations may significantly lag the flow equations and thus inhibit convergence to the steady 
state solution. In order to advance the turbulence quantities at the same rate as the flow 
equations, the source terms must be treated implicitly. However, rather than simply treat the 
source terms implicitly, the system of turbulence equations is integrated in a point-implicit 
manner. Thus we rewrite the discretized turbulence equations as 

where R(w,) represents the discretized convective and diffusive terms, which depend on the values 
of w at i and at neighbouring nodes, and H(wi) represents the discretized source terms, which 
only depend on the values of w at i. The above equation is then linearized about the values at 
i, which, upon solving for Awi, yields 



892 D. J. MAVRIPLIS AND L. MARTINELLI 

The Runge-Kutta scheme described above is now replaced by a multistage implicit scheme in 
which the qth stage is given by 

where the aq denote the Runge-Kutta coefficients for the qth stage and Ar is the local time step. 
In this manner the high-frequency damping characteristics of the original scheme are approx- 
imated, while the time step restriction due to the source terms is alleviated. The precise value 
of the local time step At employed is one which guarantees stability as well as positivity of the 
turbulence quantities. 

5. STABILITY AND POSITIVITY CONSIDERATIONS 

One method to guarantee stability of the system is to ensure that the matrix to be inverted is 
diagonally dominant. This is not a necessary condition for stability, although it is sufficient. 
This can obviously be achieved by choosing At to be sufficiently small. However, the reason for 
employing a point-implicit approach now becomes apparent. Since the two turbulence equations 
are only coupled through their source terms, the matrix dR/dw is diagonal. The contribution 
from the diffusive terms is strictly negative, as is that from the first-order upwinded convective 
terms. Hence these terms, when subtracted from the diagonal of the matrix to be inverted, 
increase the diagonal dominance and permit the use of a larger time step. The maximum value 
of At is found by equating each diagonal element to its corresponding off-diagonal element in 
the coefficient matrix. The actual value employed for the time step is taken as the minimum 
between the two values obtained by the diagonal dominance test and the value determined by 
local stability analysis for an explicit scheme in the absence of source terms. 

Physically, k and E represent quantities which must remain non-negative. Thus a further time 
step restriction is required to ensure positivity. For a simple 2 x 2 system this can easily be 
derived analytically. Thus we require that the new update to the turbulence variables be such that 

w + A w > a w ,  O < a < l ,  

or, when Aw < 0, 

\Awl < (1 - COW, 0 < a <  1. (22) 

Substituting into equation (20) and using Cramer's rule to evaluate the inverse of the 2 x 2 
matrix, we obtain two quadratic inequalities for At, i.e. one for positivity of k and one for E .  The 
time step is then limited by the smallest positive root of the two quadratic equations. 

6. MULTIGRID STRATEGY AND STEADY STATE CONSIDERATIONS 
FOR THE k-& EQUATIONS 

A multigrid strategy is employed to accelerate the solution of the system of mean flow and 
turbulence equations to steady state. In the context of unstructured meshes, multigrid may be 
applied by generating a sequence of non-nested coarse and fine meshes and transferring the 
variables, residuals and corrections back and forth between the various meshes using linear 
interpolation. The patterns for interpolating between non-nested unstructured meshes are 
determined in a preprocessing stage using an efficient search algorithm. The present multigrid 
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strategy has previously been described in detail for the Euler and Navier-Stokes equations4,l0 
and thus will not be repeated here. In previous multigrid applications for turbulent flows using 
algebraic models on structured and unstructured meshes,’~’~ the eddy viscosities are only 
computed on the finest grid and interpolated to the coarser meshes. Since the eddy viscosity 
represents the main coupling between the flow equations and the turbulence equations, a similar 
approach has been adopted in the present context, thus ensuring a more accurate representation 
of this quantity on all grid levels. However, since the eddy viscosity is only computed on the 
finest grid, it is effectively held constant throughout an entire multgrid cycle and the source 
terms must be linearized accordingly. Making use of equations (11) and (13), the linearization 
of the source terms on all grids is therefore taken as 

-1 

At this point it is worth commenting on what types of errors may be expected to be handled 
efficiently by a multigrid strategy. Multigrid is an effective device for relieving the spatial stiffness 
associated with a set of discretized equations, which is achieved by time stepping on coarser 
grids. The turbulence equations contain spatial terms such as convection and diffusion, but the 
source terms are purely local terms. In fact, in the absence of convection and diffusion the 
equations become completely uncoupled in space and a properly formulated multigrid algorithm 
should yield vanishingly small corrections in such a case. Thus it is important for the base grid 
solver to efficiently eliminate errors associated with these terms. From another point of view, if 
a purely explicit scheme were employed, a time step restriction would arise from the convection, 
diffusion and source terms. While the first two restrictions are relaxed when going to coarser 
grids, the latter remains the same on all grid levels, effectively preventing the use of large time 
steps on coarse grids and severely limiting the overall rate of convergence. The use of a 
point-implicit scheme therefore relieves any such restrictions and results in overall convergence 
rates similar to that achieved with the mean flow equations. 

At steady state the turbulence equations do not necessarily exhibit a unique solution. In regions 
where the production term p, P vanishes, k = 0, E = 0 is an obvious solution which can be found 
by inspection of equations (10) and (13). However, the eddy viscosity, which is given by equation 
(15), becomes a ratio of two vanishing quantities and is thus undefined. The time-dependent 
turbulence equations, however, are not ill-posed. On the contrary, the value of the constant C ,  
has been carefully chosen to ensure that k, E and p, all vanish asymptotically for an isotropic 
decaying turbulence. For an isotropic turbulence all spatial terms as well as the production term 
vanish and equations (10) and (13) reduce to 

E 2  
d&/dt = -C2 - 

k 
dk/dt = - 8 ,  

Solution of this system yields the asymptotic behaviour 
k x t -  l / (Cz- l )  & t - CZ/(CZ - 1) 

9 , k2/& x t(Cz-Z)/(Cz- 1) 9 t - t  co, (25) 

which for the current value of 1 -= C ,  < 2 indicates that all quantities vanish for large t. Hence, 
in order to converge to the appropriate steady state solution, it is important for any numerical 
scheme to respect the relative asymptotic time behaviour of k and E throughout the convergence 
process. For the base grid solver this is achieved by employing the maximum time step for the 
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system of two turbulence equations which ensures stability and positivity; letting k or E become 
negative or taking too large time steps and subsequently limiting the updated values of k or E 

invariably leads to unrealistic values of pl in the far field. Within the multigrid strategy, 
corrections interpolated back from the coarser grids may cause k or E to become negative. Rather 
than limit these corrections, they are simply omitted at any point where positivity cannot 
otherwise be guaranteed. In this manner the (pointwise) time consistency is not violated and the 
overall effect is simply to lag such points by the effective coarse grid time step. An alternative 
approach would be to recompute the coarse grid corrections employing a smaller time step 
which guarantees positivity. However, owing to the recursive nature of multigrid, this represents 
a non-trivial task. 

7. BOUNDARY AND INITIAL CONDITIONS 

The derivation of the above turbulence transport equations is made under the hypothesis of a 
large-Reynolds-number flow. Thus in regions close to the wall, such as in the viscous sublayer 
where molecular effects become important, these equations are not valid. In order to avoid 
integrating the turbulence equations in these regions, we make use of wall functions. In this 
approach the governing equations for the flow and the turbulence are integrated up to a distance 
y = y, away from the wall. The flow in the remaining region 0 < y < y, is assumed to obey the 
law of the wall, i.e. 

At each time step in the solution procedure of the governing equations an estimate of the velocity 
U at y = y, is obtained. From this, the value of the wall shear stress can be obtained by solving 
equation (26) implicitly for U, (using a Newton-Raphson method). This estimate of the wall 
shear stress is then employed as a boundary condition on the momentum equation for the mean 
flow and results in Dirichlet wall boundary conditions for k and E .  In practice the point y = y, 
is very close to the wall, so that it may be approximately placed on the wall and the boundary 
conditions at y = y, may be imposed at the wall surface. For the momentum equation this 
results in a wall slip velocity U = V(y,) .  

In the far field k and E are assigned freestream values at inflow boundaries and simple 
extrapolation is employed at outflow boundaries. Initial conditions on k and E are obtained by 
imposing a level of freestream turbulence from which k is determined and E is evaluated from 
equation (15) in order to produce a low value of freestream eddy viscosity (p, < 1). However, 
since the present formulation results in a small value of pl in all regions of the flow field where 
production is negligible, the converged solution is relatively insensitive to the initial values of k 
and E.  The mean flow equations are initialized using uniform freestream flow conditions and 
applying the tangential slip velocity boundary condition (as for an inviscid flow). Throughout 
the integration process the wall shear stress obtained from equation (26), which is fed back into 
the momentum equation, retards the flow near the wall, thus creating a boundary layer profile. 

8. RESULTS USING WALL FUNCTIONS 

Two attached flow cases have been computed using the multigrid implementation of the 
high-Reynolds-number turbulence model described above. The first case consists of transonic 
flow past an RAE 2822 aerofoil. The freestream Mach number is 0.729, the incidence is 2.31" 
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and the Reynolds number is 6.5 x lo6. This case (case 6) has been well documented both 
experimentally l 4  and ~omputat ional ly~~'  331 on structured and unstructured meshes. The mesh 
employed for this case is depicted in Figure 1. It contains 12,823 vertices and exhibits a normal 
spacing of lop4 chords at the aerofoil surface, which positions the first point off the wall in the 
logarithmic law-of-the-wall region. The computed Mach contours for this case are shown in 
Figure 2, while the resulting eddy viscosity distribution is given in Figure 3. A smooth 
distribution of eddy viscosity throughout the boundary layer and wake regions and vanishingly 
small values in the inviscid regions of flow are observed. The computed surface pressure 
distribution is compared with experimental data14 in Figure 4, showing good overall agreement. 
The convergence rate of the system of equations is depicted in Figure 5 by plotting the RMS 
average of the density residual and the residual of p k  throughout the flow field versus the number 
of multigrid cycles. As can be seen, the flow equations and turbulence equations converge with 
the same asymptotic rates. The residuals are reduced by roughly six orders of magnitude over 
200 cycles, yielding an overall convergence rate of 0.93. 

The second case involves flow over a high-lifting four-element aerofoil. This case is useful in 
demonstrating the complex geometries and resulting flow fields which can be handled by the 
present methodology. The mesh employed is depicted in Figure 6. It contains a total of 51,100 
vertices and a normal spacing of 2 x chords off the wall for each aerofoil element. The 
computed Mach contours are shown in Figure 7, while the resulting eddy viscosity distribution 
is given in Figure 8. The ease with which multiple wakes and confluent boundary layers may 
be handled by the present approach is evident from the figures. The computed surface pressure 
distribution is seen to compare favourably with experimental wind-tunnel data16 in Figure 9. 
It should, however, be pointed out that such favourable agreement is in large part due to the 

Figure 1 .  Unstructured mesh employed for computing flow over an RAE 2822 aerofoil (number of vertices, 12,823) 
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Figure 2. Computed Mach contours for turbulent flow over an RAE 2822 aerofoil using wall functions (Mach 0729, 
Re = 6 5  x lo6, incidence 2.31") 

Figure 3. Computed eddy viscosity contours for turbulent flow over an RAE 2822 aerofoil using wall functions (Mach 
0.729, Re = 6.5 x lo6, incidence 2.31") 
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Figure 4. Comparison of computed surface pressure using wall functions with experimental measurements for flow over 
an RAE 2822 aerofoil (Mach 0.729, Re = 6.5 x lo6, incidence 231") 

0: 

8 i  a $ 0  100 Number 200 300 of Cycles do0 5M) 600 

Figure 5. Convergence rate of density equation and k-equation using wall functions versus number of multigrid cycles 
for flow over an RAE 2822 aerofoil 
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Figure 6 .  Unstructured mesh employed for computing flow over a four-element aerofoil (number of vertices, 51,100) 

Figure 7. Computed Mach contours using wall functions for flow over a four-element aerofoil (Mach 0.2, Re = 2.83 x lo6, 
incidence 8.18") 
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Figure 8. Computed eddy viscosity contours using wall functions for flow over a four-element aerofoil (Mach 02, 
Re = 283 x lo6, incidence 8.18") 

Figure 9. Comparison of computed surface pressure using wall functions with experimental wind-tunnel data for flow 
over a four-element aerofoil (Mach 0.2, Re = 2.83 x lo6, incidence 8.18") 
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Figure 10. Multigrid convergence rate of density equation and k-equation using wall functions for flow over a 
four-element aerofoil 

attached nature of the flow. The multigrid convergence rates of the density equation and the 
k-equation are depicted in Figure 10, where both equations are seen to achieve approximately 
the same asymptotic rates, decreasing by four orders of magnitude over 300 cycles. 

9. LOW-REYNOLDS-NUMBER TURBULENCE MODEL MODIFICATIONS 

While the use of the high-Reynolds-number turbulence equations in conjunction with wall 
functions is useful for a large class of wall-bounded flows, it is nevertheless limited to flows 
where a logarithmic law-of-the-wall region exists and is thus strictly not valid for separated 
flows. An alternative approach is to modify the turbulence equations in order to account for 
low-Reynolds-number effects. Many such modifications have been proposed over the years with 
varying degrees of success.” One common feature of all such modifications is that they have 
proved exceedingly difficult to integrate numerically very close to the wall. The aim of the 
present work is to develop an efficient and robust technique for integrating such models rather 
than reformulating or advocating any one model in particular. With this in mind we chose to 
implement the simplest possible low-Reynolds-number model that has been demonstrated to 
produce good results for simple problems, with possible extensions to more complex models 
should the original version prove inadequate for more complicated flows. To this end the 
modifications proposed by Speziale et al. have been implemented. The modified turbulence 
equations, now given in vector form, can be written as 
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2 
PI=-, PC, & f, k2  f, = (1 + 2) tanh(&). f2 = [ 1 - e x p ( g ) ]  , 

with boundary conditions at the wall given by 

/.l a 2 k  k = 0, & = - -  

P a y 2 ’  

and employing the following values for the constants: 

C,  = 0.09, ok = 1.36, a, = 1.36, 

C1 = 1.44, C, = 1.83[1 - $ e~p(-Re,/6)~], 

where Re, = p k 2 / p  is the turbulence Reynolds number. As can be seen, no extra source terms 
are introduced and only two damping functions are required. This model is similar in form to 
the Lam-Bremhorst model,’ with the notable difference that all damping functions depend 
solely on y + .  The evaluation of such functions requires the knowledge of the distance of each 
point from the closest wall. In the context of unstructured meshes this information can be 
constructed through the use of a generalized distance function as outlined by Barth.” As with 
most low-Reynolds-number turbulence models, the current form of the model has been reported 
to be extremely stiff in near-wall regions, generally requiring the prescription of initial profiles 
in k and E in order to guarantee convergence to steady state. Such techniques are considered 
impractical for complex aerodynamic flows and thus a more robust solution strategy has been 
pursued. The difficulties associated with the near-wall regions can be assessed by inspection of 
equations (27). When the wall boundary condition k = 0 is substituted into the &-equation, it is 
seen to result in a singularity, since k appears in the denominator of this equation. Since f i  also 
vanishes at the wall, this singularity is in principle removable. However, the numerical integration 
of the &-equation in its present form will only be well behaved if f2 and k have the same asymptotic 
behaviour near the wall throughout the integration procedure, hence the need for start-up 
profiles. The approach taken in this work is to remove the singularity by solving for a new 
variable defined as 

k = ef2 or k ” =  k / f 2 .  (29) 

Upon substituting this expression into equation (27) and using the chain rule to evaluate the 
gradient operators, one obtains the new set of equations 

a p e  
__ + u * V ( p L )  = V 
at ( p t P  - 3SpLf2 - PE)  

+ f 2  [2(, + ;).f.. ve], 
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E2 - Jc,sp& - c2p 7 .  

at k 
9 + u . V(P&) = v . 

While the /?-equation now looks rather complicated, the new terms are only significant in the 
region f2 -g 1, and in fact, although all terms have been included, only the term h2f2 has been 
found to have a significant effect on the overall solution. At the wall we have 

f2 = 0, Vf2 = 0, V'f2 > 0 

as well as 

c l t  = 0, P = 0, s = 0, u = 0. 

The boundary condition k = 0 implies /? bounded at the wall. Since f2 which appears as a 
denominator on the right-hand side of the i-equation vanishes, we require the non-vanishing 
terms in the numerator to sum to zero, thus yielding the condition 

/? = P&//lV2f2. (31) 

Upon substituting this expression into the &-equation with u = 0, pt = 0 and S = 0, one obtains 
a modified Helmoltz equation for E at the wall in the steady state: 

(32) vpv& - c,pvzfis = 0. 

This equation is well behaved and simple to integrate numerically. The boundary condition 
employed for E is taken to be 

a&/ay = 0. (33) 

While it is realized that this condition may not be entirely accurate at the wall,z1 it is used at 
this initial stage for simplicity and may be modified in further work. 

In regions removed from the wall the &-equation remains well behaved. The k-equation on 
the other hand contains the source term k"V2f2. V2f2, which can be approximated as d2f2/dy2, 
has the properties 

V2f2 > 0, y+  < 3.4, 

V2f2 < 0, y+  > 3.4, 
(34) 

where y +  = 3.4 represents the point of inflection in the f,-function. In regions where V'fi is 
negative or zero, the k-equation is well behaved. However, Vzf2 large and positive represents a 
growing source term, which can be numerically unstable. However, since the point y +  = 3.4 is 
very close to the wall and within the laminar sublayer, k can be approximated by the relation 

k +  =constant x y+2  (35) 

or 

which from direct simulationsz2 is generally known to be valid up to y+  = 10. Finally, in regions 
far away from the wall the damping functions become unity, their derivatives all vanish and the 
original high-Reynolds-number equations are recovered, albeit with the new values of the 
constants advocated in Reference 18. Thus in summary the &-equation given in the form (30) is 
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employed throughout the entire flow field, except at the wall where the form (32) is used. For 
the i-equation the form given by equation (30) is employed from the far field up to y +  = 3.4, 
which is within the laminar sublayer. Below this value of y +  equation (36) is employed with the 
boundary condition for 

The multigrid strategy previously described for the high-Reynolds-number turbulence equa- 
tions carries over in a straightforward manner. The linearization of the source terms is now 
taken as 

given by equation (31). 

1 -- 
f 2  

aw E2 E 
- f C , S  - 2c, - 

k C,C,f,f,P + c, p 
(37) 

where the production term in the &-equation has been simplified by the definition of p, in 
equations (27) in order to remove k from the denominator. The damping functions are evaluated 
only on the finest grid and interpolated up to the coarser grids, thus affording a more consistent 
representation of the equations on all grid levels. A full multigrid strategy is employed in which 
grid sequencing is used to provide an initial solution for the fine grid. In general it has been 
found advantageous to use the high-Reynolds-number model with wall functions on coarse grids 
and the low-Reynolds-number model on the finest grid when grid sequencing, thus rapidly setting 
up appropriate levels of eddy viscosity on the finest grid. 

10. RESULTS 

The present implementation of the low-Reynolds-number turbulence model has been employed 
to compute the turbulent boundary layer over a flat plate, the transonic flow over an RAE 2822 
aerofoil and the transonic flow over a two-element aerofoil. 

The mesh employed to compute the flat plate boundary layer case is depicted in Figure 11. 
It contains 24 points ahead of the plate, 48 points along the plate in the streamwise direction 
and 80 points in the direction normal to the plate. The freestream Mach number is 0.3 and the 
Reynolds number of the flow, based on the length of the plate, is 10'. The first point normal to 
the plate is located at  a distance of 2 x plate lengths, which lies in the region y +  < 1. The 
resulting velocity profiles are plotted in Figures 12 and 13, both in physical co-ordinates and 
in logarithmic wall co-ordinates, and compared with the well-known one-seventh-power-law 
distribution and logarithmic law-of-the-wall profile. The computed skin friction is plotted in 
Figure 14 versus the experimental data taken from Reference 23. The resulting distributions of 
k and E are shown in Figures 15 and 16. The well-known peaks of k and E are observed and a 
non-zero value of E at the wall is obtained. These distributions are, however, slightly different 
from those obtained previously with the same model," which may be attributed either to the 
different boundary condition or to the near-wall grid resolution. The overall flow quantities are 
nevertheless well predicted, as shown in Figures 12-14. 

The transonic flow case over the RAE 2822 aerofoil presented in the previous section has 
been recomputed with the low-Reynolds-number turbulence model (Mach 0.729, incidence 2.31", 
Re = 6 3  x lo6). The mesh employed is similar to that shown in Figure 1, except that the normal 
spacing at the wall is now reduced to 1 x chords, which results in the first mesh point off 
the wall in the region 1 < y +  -= 3 over the entire surface of the aerofoil. The computed Mach 
contours and eddy viscosity contours are similar to those depicted in Figures 2 and 3, except 



904 D. J. MAVRIPLIS AND L. MARTINELLI 

Figure 1 1 .  Triangular mesh employed for flat plate boundary layer calculation (number of vertices, 5913; 10: 1 
magnification in y-direction) 

Figure 12. 
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Figure 17. Computed surface pressure distribution using low-Reynolds-number modification for turbulence equations 
versus experimental data for flow past an RAE 2822 aerofoil (Mach 0.729, Re = 6 5  x lo6, incidence 2.31") 

in the near-wall regions where both quantities vanish rapidly. The computed surface pressure 
and skin friction distributions are compared with experimental data in Figures 17 and 18. The 
computed lift is slightly lower than that predicted with the wall functions and that previously 
obtained using an algebraic model.' At present it is not clear whether this is due to the actual 
model formulation or is associated with the present implementation (artificial dissipation, grid 
resolution). However, the differences are rather small and the skin friction appears to be well 
predicted. The convergence of the density equation and the two turbulence equations is depicted 
in Figure 19, where the residuals are plotted versus the number of multigrid cycles on the finest 
grid. The flow field and turbulence equations are all initialized with uniform freestream values 
and 25 cycles were performed on the previous coarser grid using wall functions prior to 
initializing the solution procedure on the finest grid. Initializing the calculation with freestream 
values for all equations on the finest grid has also been employed with little degradation in 
convergence. From Figure 19 all equations are seen to converge at approximately the same rate, 
resulting in a residual reduction of four to five orders of magnitude over 300 multigrid cycles. 

The final case involves the transonic flow over a two-element aerofoil. This case illustrates 
the ease with which complex geometries and flows with multiple viscous layers may be handled 
by the present methodology. The mesh employed is depicted in Figure 20. It contains a total 
of 28,871 vertices, with a normal spacing of 2 x lo-'  chords off the wall for each aerofoil element. 
The freestream Mach number is 0.5, the incidence is 7.5" and the Reynolds number is 4.5 x lo6. 
The computed Mach contours and eddy viscosity contours are depicted in Figures 21 and 22. 
Under these conditions the flow is supercritical and a shock is formed on the upper surface of 
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Figure 18. Computed skin friction distribution using low-Reynolds-number modification for turbulence equations versus 
experimental data for flow past an RAE 2822 aerofoil (Mach 0.729, Re = 6.5 x lo6, incidence 2.31") 
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Figure 19. Convergence rate of density equation and the two turbulence equations modified for low-Reynolds-number 
effects versus number of multigrid cycles for flow past an RAE 2822 aerofoil 
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Figure 20. Global view of coarse unstructured mesh and close-up view of fine unstructured mesh employed for computing 
flow past a two-element aerofoil (coarse mesh points 7272, fine mesh points 28,871) 
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Figure 21. Computed Mach contours using low-Reynolds-number modification for turbulence equations for supercritical 
flow over a two-element aerofoil (Mach 05 ,  Re = 4.5 x lo6, incidence 7.5") 

the slat. A small region of separated flow occurs behind the shock, as can be seen from the skin 
friction plot of Figure 23. This region of separation has previously been reported in calculations 
using an algebraic turbulence model.' The computed surface pressure distribution is seen to 
compare favourably with experimental wind-tunnel dataz4 in Figure 24. The convergence rate 
for this case is depicted in Figure 25, where the residuals of the density equation and the two 
turbulence equations are reduced by approximately three to four orders of magnitude over 300 
cycles on the finest grid. 



MULTlGRlD SOLUTION OF COMPRESSIBLE TURBULENT FLOW 91 1 

Figure 22. Computed eddy viscosity contours using low-Reynolds-number modification for turbulence equations for 
supercritical flow over a two-element aerofoil (Mach 0.5, Re = 4 5  x lo6, incidence 7.5") 

t 

Figure 23. Computed skin friction distribution on slat showing region of separated flow behind upper surface shock 
(Mach 0 5 ,  Re = 4.5 x lo6, incidence 7.5") 
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Figure 24. Computed surface pressure distribution using low-Reynolds-number modification for turbulence equations 
for supercritical flow over a two-element aerofoil versus experimental wind-tunnel data (Mach 0.5, Re = 4.5 x lo6, 

incidence 7.5") 
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Figure 25. Multigrid convergence rate of density equation and the two turbulence equations using low-Reynolds-number 
modifications for flow over a two-element aerofoil (Mach 0.5, Re = 4.5 x lo6, incidence 7.5") 
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11. CONCLUSIONS 

A multigrid strategy for solving the steady state, high- and low-Reynolds-number k - E 

turbulence equations has been formulated and implemented on unstructured meshes. A variety 
of aerodynamic flows have been computed, consistently demonstrating similar convergence rates 
for the turbulence and flow equations. Initialization of all flow and turbulence quantities may 
be performed using uniform freestream values. At present the evaluation of the turbulence terms 
requires a significant fraction of the overall time within a single time step. For example, the RAE 
2822 supercritical aerofoil flow case with the low-Reynolds-number turbulence model requires 
roughly 2.5 s per multigrid cycle on a single processor of the Cray-YMP supercomputer, which 
is almost 75% higher than that required by the algebraic model reported previously.’ However, 
it is estimated that this can be substantially reduced by assembling the turbulence and flow 
residuals simultaneously within a single loop. Given the demonstrated convergence rates, the 
two-equation turbulence model should be competitive in terms of computer resources with 
algebraic models, while providing much greater flexibility in dealing with complex geometries 
and flow fields. 

Future work should involve a more thorough investigation of the various two-equation 
turbulence models and their ability in predicting complex aerodynamic flows, including flows 
with massive separation. 
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